Trigonometrik Fonksiyonlarda Limit

0

Trigonometrik fonksiyonlarda limit nasıl hesaplanır? Trigonometrik fonksiyonlarda limitin özellikleri, örnekler.

1-
\displaystyle \underset{k\to 0}{\mathop{\lim }}\,\frac{\sin k}{k}=1

Advertisement

2-
\displaystyle \underset{k\to 0}{\mathop{\lim }}\,\frac{\tan k}{k}=1

3-
\displaystyle \underset{k\to 0}{\mathop{\lim }}\,\frac{\sin ak}{bk}=\frac{a}{b}

4-
\displaystyle \underset{k\to 0}{\mathop{\lim }}\,\frac{\tan ak}{bk}=\frac{a}{b}

5-
\displaystyle \underset{k\to 0}{\mathop{\lim }}\,\frac{\sin ak}{\sin bk}=\frac{a}{b}

Advertisement

6-
\displaystyle \underset{k\to 0}{\mathop{\lim }}\,\frac{\tan ak}{\tan bk}=\frac{a}{b}

ÖRNEK:

\displaystyle \underset{x\to 0}{\mathop{\lim }}\,\frac{\sin \frac{2x}{2}}{3{{x}^{2}}} limitini bulunuz.

\displaystyle \underset{x\to 0}{\mathop{\lim }}\,\frac{\sin \frac{2x}{2}}{3{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\frac{{{\left( \frac{\sin \frac{x}{2}}{x/2} \right)}^{2}}.\frac{{{x}^{2}}}{4}}{3{{x}^{2}}}

\displaystyle \underset{x\to 0}{\mathop{\lim }}\,\frac{\sin \frac{2x}{2}}{3{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\left[ {{\left( \frac{\sin \frac{x}{2}}{x/2} \right)}^{2}}.\frac{{{x}^{2}}}{4}.\frac{1}{3{{x}^{2}}} \right]={{1}^{2}}.\frac{1}{12}=\frac{1}{12}

ÖRNEK:
\displaystyle \underset{x\to 0}{\mathop{\lim }}\,\frac{\left( 1-\cos 2x \right)\tan x}{{{x}^{2}}\sin x} limitini bulalım.

Advertisement

\displaystyle \underset{x\to 0}{\mathop{\lim }}\,\frac{\left( 1-\cos 2x \right)\tan x}{{{x}^{2}}\sin x}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\left[ 1-\left( 1-2{{\sin }^{2}}x \right) \right]\tan x}{{{x}^{2}}\sin x}

\displaystyle =\underset{x\to 0}{\mathop{\lim }}\,\frac{2{{\sin }^{2}}x.\tan x}{{{x}^{2}}\sin x}=\underset{x\to 0}{\mathop{\lim }}\,\frac{2\sin x.\tan x}{{{x}^{2}}}

\displaystyle =\underset{x\to 0}{\mathop{\lim }}\,\left( 2.\frac{\sin x}{x}\frac{\tan x}{x} \right)=2.1.1=2 olur.

ÖRNEK:

\displaystyle \underset{x\to a}{\mathop{\lim }}\,\frac{\sin x-\sin a}{{{x}^{2}}-{{a}^{2}}} limiti nedir?

\displaystyle \underset{x\to a}{\mathop{\lim }}\,\frac{\sin x-\sin a}{{{x}^{2}}-{{a}^{2}}}=\underset{x\to a}{\mathop{\lim }}\,\frac{2.\cos \frac{x+a}{2}.\sin \frac{x-a}{2}}{{{x}^{2}}-{{a}^{2}}}

\displaystyle \underset{x\to a}{\mathop{\lim }}\,\left[ \frac{2\cos \left( \frac{x+a}{2} \right)}{x+a}.\frac{\sin \frac{x-a}{2}}{\left( \frac{x-a}{2} \right).2} \right]=\frac{2\cos a}{2a}.1.\frac{1}{2}=\frac{\cos a}{2a}


Leave A Reply